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Gravitational radiation degrees of freedom in hyperbolic systems for numerical relativity
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The gravitational radiation degrees of freedom are described in the framework of the 311 decomposition of
spacetime. The relationship with the eigenfields of the Kidder-Scheel-Teukolsky~KST! equations is estab-
lished. This relationship is used to fix a parameter in the KST equations which is related to the ordering
ambiguity of space derivatives in the Ricci tensor, which is inherent to first order evolution systems, such as the
ones currently used in numerical relativity applications.
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I. INTRODUCTION

The structure of Einstein field equations has attrac
great interest since the very beginning of general relativity
was early noticed that, by rearranging the order or par
derivatives, the principal part of the four dimensional Ric
tensor could be written as a sort of generalized wave eq
tion @1–3#

2Rmn52hgmn1]mGn1]nGm1•••, ~1!

where the box stands for the d’Alembert operator acting
functions and we have written, for short,

Gm[grsGm
rs52hxm. ~2!

This opened the way to the use of harmonic spacet
coordinates (hxm50) in order to obtain a hyperbolic evo
lution system@4–6#.

By the middle of the past century, however, the inter
focused on the relativistic Cauchy problem. The 311 de-
composition of the line element

ds252a2dt21g i j ~dxi1b idt!~dxj1b jdt!, i , j 51,2,3
~3!

allowed one to express six of the ten second order orig
equations as a system of evolution equations for the me
g i j and the extrinsic curvatureKi j of the t5const slices:
namely,

~] t2Lb!g i j 522aKi j , ~4!

~] t2Lb!Ki j 52¹ia j1a@ (3)Ri j 22Ki j
2 1tr KKi j #, ~5!

whereL stands for the Lie derivative~we restrict ourselves
to the vacuum case for simplicity!. The remaining four equa
tions could instead be expressed as constraints:

(3)R2tr ~K2!1~ tr K !250, ~6!

¹kK
k
i2] i~ tr K !50. ~7!

This opened the door to a new way of obtaining hyp
bolic evolution systems@7–9#. The key point was to use in
one or another way the momentum constraint~7! to ensure
hyperbolicity while keeping the freedom of choosing ar
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trary space coordinates on everyt5const slice. This allows
for instance to use normal coordinates (b i50) without af-
fecting the mathematical structure of the evolution syste
.~See Ref.@10# for a detailed comparison of the ‘‘old’’ and
‘‘new’’ hyperbolic systems.!

These findings came at the right moment for people wo
ing on numerical relativity with a view on the gravitation
waves detector projects starting by the turn of the centu
Following the wake of these first works, many groups fou
their own way of combining the momentum constraint w
the evolution equation~5!, leading in each case to a ne
brand of hyperbolic systems@1,11–25#.

Suddenly, the problem of having too few hyperbolic fo
malisms for numerical relativity turned into the oppos
problem of having too many of them. Some of the wor
considered even multiparameter families of hyperbolic s
tems@1,10,14#. Faced with the problem of choice, we thin
that the right question at this point is: what are hyperbo
systems for?

There are many answers, of course, but we can get a
when we realize that hyperbolic systems basically desc
propagation phenomena along characteristic lines. This
up the question of whether we can use these formalism
the context of gravitational wave propagation. The 311 for-
malism does not seem at first sight very useful in that c
text, because it describes spacetime as a foliation ot
5const hypersurfaces. Then, the natural structure assoc
with gravitational waves in that formalism is not the lig
cone itself, but the two-dimensional surfaces~wave fronts!
obtained as the intersection of the light cone with thet
5const hypersurfaces. The geometry of wave fronts will
discussed in Sec. II. The second difficulty arises from
fact that, because of the constraint equations~6!, ~7!, only
two degrees of freedom correspond to gravitational radia
in spite of the complete~strong! hyperbolicity of the formal-
isms. This point can be easily illustrated by looking at the
of characteristic speeds given in the Kidder-Sche
Tevkolsky ~KST! paper@1# namely$0,61,6c1 ,6c2 ,6c3%
wherec1 , c2 andc3 depend of a list of arbitrary paramete
related with the gauge choice (c1) and with the way in which
the constraints are used to enforce hyperbolicity. It is cl
that the degrees of freedom propagating with speed 0,6c1 ,
6c2 or 6c3 cannot describe gravitational radiation, whic
we know that propagates at light speed (v561), indepen-
©2002 The American Physical Society20-1
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dently of how we manage to write down our equations. T
two remaining degrees of freedom, as expected, are rel
with transverse traceless components of the extrinsic cu
ture Ki j . We will analyze more closely these eigenfields
Sec. III.

II. LIGHT CONES AND WAVE FRONTS

Let us consider the propagation of a burst of gravitatio
waves. From the geometrical point of view, it can be d
scribed as a foliation of spacetime by a set of null hypers
faces~light cones!, namely

f~x,t !5const, ~8!

df•df50. ~9!

From everyt5const hypersurface, the propagation is se
instead as a succession of wave fronts. It can be obtaine
settingt5to in Eq. ~8! to obtain

f~x,to!5const ~10!

so that the null foliation~8! induces a spacelike foliation~10!
by two-dimensional surfaces~wave fronts! on every t
5const slice.

Let us consider now an adapted coordinate system on
t5to slice so that the space unit normalnk to the wave front
~10! is given by

nk5Ndk
z ~11!

and the other two coordinatesxa (a51,2) display the wave
fronts surface. The line element for thet5to slice can then
be written as (211 decomposition!

g i j dxidxj5N2dz21sab~dxa1ladz!~dxb1lbdz!,

a,b51,2, ~12!

wheresab is the induced metric on every wave front surfac
so that it describes the intrinsic geometry of the wave fron

The extrinsic geometry of the wave front foliation~10! is
in turn described by the second fundamental formkab ,
namely

kab5
1

2N
~]z2Ll!sab . ~13!

Both sab and kab are 211 tensors, in the sense that the
transform in a covariant way under changes of coordinate
the form

z̃5 f ~z!, ~14!

x̃a5ha~x,z!, ~15!

which transform the wave front foliation~10! into itself.
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Notice thatsab , kab can be easily expressed in terms
the three-dimensional metricg i j and the spacelike unit nor
mal nk , namely,

sab5gab , ~16!

kab52nkG
k
ab , ~17!

whereGk
i j stand for the Christoffel symbols ofg i j .

III. SOLVING THE ORDERING AMBIGUITY

Let us come back now to the results of the KST paper@1#.
The principal part of the first order evolution systems p
sented there can be written in flux-conservative form for
array of variablesu5$g i j ,Ki j ,dki j%, namely

1

a
] tu1]kF

k~u!5•••, ~18!

so that propagation along the direction given bynk can be
studied by solving the following characteristic eigenval
problem:

Fn~u![nkF
k~u!5vu. ~19!

From the transverse componentsKab , one has@1#

Fn~Kab!5
1

2
@dn

ab2~11z!d(ab)
n1mgab~dnk

k2dk
kn!#

~20!

so that the parameterm ~corresponding tog in @1#! does not
contribute to the transverse traceless part. On the other h
one has@1#

Fn~dnab!52Kab2xgab~Knn2tr K !, ~21!

Fn~dabn!52
h

2
gab~Knn2tr K ! ~22!

so that it is clear again that the parametersh, x do not
contribute to the transverse traceless part.

This means that the traceless part of the combinations

Kab6
1

2
@dn

ab2~11z!d(ab)
n# ~23!

corresponds to eigenfields propagating with light speedv
561, respectively!. The parameterz appearing in Eq.~23!
is related with the ordering ambiguity inherent to first ord
formalisms, where the space derivativesdki j are considered
to be independent quantities, so that the identity

] [ rds] i j 50 ~24!

is not granted and must be considered as a supplemen
constraint@1#. The valuez521 corresponds to a decompo
sition of the three-dimensional Ricci tensor of the form~1!,
which is closer to the wave equation. The valuez511 cor-
responds instead to the simpler decomposition
0-2
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(3)Ri j 5]kG
k
i j 2] ( iG

k
j )k1Gk

krG
r
i j 2Gk

ri G
r
k j . ~25!

Notice that, allowing for~17!, the combinations~23! in the
z511 case can be written as

Kab6kab ~26!

so that they have a geometrical meaning in terms of
extrinsic curvature of thet5const hypersurfaces and th
wave front foliation. For any other value ofz, however, the
eigenfields described by the traceless part of Eq.~23! are not
covariant under the coordinate transformations~14! and do
not admit then any consistent, coordinate independent, ph
cal interpretation. It follows that one can solve the order
ambiguity for the derivatives in the principal part of th
Ricci tensor by requiring that the eigenfields correspond
to the transverse traceless degrees of freedom do have a
geometrical meaning in terms of the geometry of thet
5const hypersurfaces and that of the wave fronts. This
quirement amounts to select the particular valuez511, cor-
responding to the classical decomposition~25!.

IV. CONCLUDING REMARKS

The parameter dependence of the eigenfields~23! may
seem surprising at the first sight, because these transv
traceless degrees of freedom are related with a real phy
phenomenon~gravitational waves!, which is independent on
how we do actually decompose the Ricci tensor. This pa
dox can be solved by noticing that the fluxes appear in
evolution equations~18! under a divergence operator; th
parameterz appears when including the ‘‘rotational’’ con
straint ~24!, but all these terms just cancel under the div
gence operator, so that all values ofz are physically equiva-
lent.

The special choicez511 corresponds to the only case
which the fluxes themselves inherit the covariance proper
of the equations. We claim that this is an important featu
because then gravitational radiation features are explic
inherited by the eigenfields of the system.

On the other hand, there are indications thatz511 may
not be convenient from the numerical relativity point
view. Most of the formalisms that are being currently~and
D
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successfully! used to that end actually imply the opposi
choice (z521). These include at least the Bona-Mas´
@8,12#, Shibata-Nakamura@26#, Baumgarte-Shapiro@27# and
Anderson-York @25# formalisms. The reason may be th
with the z521 choice the transverse traceless part of
evolution system looks like that of the wave equation,
pointed out in@1#, which is known to admit a symmetric
hyperbolic form.

Symmetric hyperbolicity is a stronger requirement th
just strong hyperbolicity in order to ensure existence, unic
and stability of the solutions arising from a given set
initial data~well posedness! @28#. When the evolution system
is just strongly hyperbolic, but not symmetric hyperbol
then well posedness is not ensured for nonsmooth data,
the ones arising in numerical experiments due to finite m
chine accuracy.

We actually have some preliminary evidence that
choicez511 is prone to numerical instabilities. To confirm
this, one must proceed to a systematic exploration of par
eter space like the one presented in the KST paper@1# for the
z521 case. There is also some theoretical evidence@29#
that the choicez511, when combined with conventiona
choices of the other parameters introduced in@1#, does not
lead to a symmetric hyperbolic system. This opens the w
from the theoretical point of view, to using the symmetr
hyperbolicity requirement, in thez511 case, to restrict the
values of the other parameters, then reducing the volum
parameter space.

We are currently working along these lines, both from t
theoretical and from the numerical point of view.
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