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Gravitational radiation degrees of freedom in hyperbolic systems for numerical relativity
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The gravitational radiation degrees of freedom are described in the framework of thel8composition of
spacetime. The relationship with the eigenfields of the Kidder-Scheel-Teuk@<y) equations is estab-
lished. This relationship is used to fix a parameter in the KST equations which is related to the ordering
ambiguity of space derivatives in the Ricci tensor, which is inherent to first order evolution systems, such as the
ones currently used in numerical relativity applications.
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. INTRODUCTION trary space coordinates on every const slice. This allows
for instance to use normal coordinate8 € 0) without af-
The structure of Einstein field equations has attractedecting the mathematical structure of the evolution system-
great interest since the very beginning of general relativity. “.(See Ref[10] for a detailed comparison of the “old” and
was early noticed that, by rearranging the order or partiak,a,” hyperbolic systems.
derivatives, the principal part of the four dimensional Ricci  These findings came at the right moment for people work-
t_ensor could be written as a sort of generalized wave equqhg on numerical relativity with a view on the gravitational
tion [1-3] waves detector projects starting by the turn of the century.
2R,,=—0g,,+d,[,+d,T,+- -, (1) Fol!owing the wake of t'helzse first works, many groups foqnd
their own way of combining the momentum constraint with
where the box stands for the d’Alembert operator acting orthe evolution equatiori5), leading in each case to a new

functions and we have written, for short, brand of hyperbolic systeni4,11-28.
" Suddenly, the problem of having too few hyperbolic for-
[H=gPors, o= — DX~ 2 malisms for numerical relativity turned into the opposite

. ; . é‘)roblem of having too many of them. Some of the works
This opened the way to the use of harmonic SpaCe“mconsidered even multiparameter families of hyperbolic sys-
coordinates [0x*=0) in order to obtain a hyperbolic evo- 0 110 14. Faced p’th th bl ¢ ch yp thi 3{(
lution systerm4—6]. ems[1,10,14. Faced wi e problem of choice, we thin

however. the interestthat the right question at this point is: what are hyperbolic

By the middle of the past century, systems for?

focused on the relativistic Cauchy problem. The B de-

composition of the line element There are many answers, of course, but we can get a hint
o o when we realize that hyperbolic systems basically describe
ds?= — @?dt?*+ y;;(dX + g'dt)(dx + gldt), i,j=1,2,3 propagation phenomena along characteristic lines. This sets

(3 up the question of whether we can use these formalisms in

. ~ the context of gravitational wave propagation. The B for-
allowed one to express six of the ten second order originahalism does not seem at first sight very useful in that con-

equations as a s_ys'gem of evolution equations for th_e metrigext, because it describes spacetime as a foliationt of
7ij and the extrinsic curvaturk; of the t=const slices:  — const hypersurfaces. Then, the natural structure associated
namely, with gravitational waves in that formalism is not the light
_ cone itself, but the two-dimensional surfad@sgmve fronts
(= Lp)yij= —2aK;, 4 Obtained as the intersection of the light cone with the
=const hypersurfaces. The geometry of wave fronts will be
discussed in Sec. Il. The second difficulty arises from the
fact that, because of the constraint equati@)s (7), only
two degrees of freedom correspond to gravitational radiation
in spite of the completéstrong hyperbolicity of the formal-
isms. This point can be easily illustrated by looking at the list

where £ stands for the Lie derivativewe restrict ourselves
to the vacuum case for simplicjtyThe remaining four equa-
tions could instead be expressed as constraints:

GIR—tr (K?) + (trK)2=0, (6)  of characteristic speeds given in the Kidder-Scheel-
Tevkolsky (KST) paper[1] namely{0,+1,=¢c,,*C,,*C3}
Vi KK —a;(trK)=0. (7)  Wherecy, c; andcs depend of a list of arbitrary parameters

related with the gauge choice,( and with the way in which
This opened the door to a new way of obtaining hyper-the constraints are used to enforce hyperbolicity. It is clear
bolic evolution system§7—9]. The key point was to use in that the degrees of freedom propagating with speetdt ©,,,
one or another way the momentum constrdifitto ensure  *c, or £c5; cannot describe gravitational radiation, which
hyperbolicity while keeping the freedom of choosing arbi-we know that propagates at light speed=(+1), indepen-
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dently of how we manage to write down our equations. The Notice thato,p,, k4, Can be easily expressed in terms of
two remaining degrees of freedom, as expected, are relatete three-dimensional metrig; and the spacelike unit nor-
with transverse traceless components of the extrinsic curvanal n,, namely,

ture K;; . We will analyze more closely these eigenfields in

Sec. Il Tab= Yab: (16)

Kab=— N ap, (17

) ) o whereF"ij stand for the Christoffel symbols of; .
Let us consider the propagation of a burst of gravitational

Il. LIGHT CONES AND WAVE FRONTS

waves. From the.geometrical .point of view, it can be de- Ill. SOLVING THE ORDERING AMBIGUITY
scribed as a foliation of spacetime by a set of null hypersur-
faces(light coneg, namely Let us come back now to the results of the KST pdpgr
The principal part of the first order evolution systems pre-
¢(X,t)=const, (8)  sented there can be written in flux-conservative form for the
array of variablesi={y;; ,Kjj ,dy;j}, namely
d¢-d¢=0. 9 .
- Ku=-..
From everyt=const hypersurface, the propagation is seen aatu+akF (u) ’ (18)
instead as a succession of wave fronts. It can be obtained by
settingt=t, in Eqg. (8) to obtain so that propagation along the direction givenrycan be
studied by solving the following characteristic eigenvalue
¢(x,t,)=const (10 problem:
so that the null foliation{8) induces a spacelike foliatioi10) Fh(u)=nFu)=ou. (19
t;ycotrv]vsc;—gllir:ee nsional surfaceswave fronts on every t From the transverse componeifs,, one hag1]
Let us consider now an adapted coordinate system on the 1
tlzoto_slic_e SO I;hat the space unit nornmgl to the wave front FY(Kap) = E[dnab_ (1+ ) d@ap) "+ MYap(d™—dkM]
(10) is given by (20)
=Ny (11 so that the parameten (corresponding toy in [1]) does not

) ) contribute to the transverse traceless part. On the other hand,
and the other two coordinate$ (a=1,2) display the wave gne haq1]

fronts surface. The line element for thet, slice can then
be written as (2-1 decomposition F"(dnap) = 2K ap— X Yap(K"—1tr K), (21

1dXdx = N2d 22+ o gp(d X+ N2d 2) (dX°+\Pd 2),
" * F(dabr) =~ 5 Yab(K""— 1K) (22
a,b=1,2, (12
so that it is clear again that the parameters y do not
whereo,;, is the induced metric on every wave front surface,contribute to the transverse traceless part.
so that it describes the intrinsic geometry of the wave fronts. This means that the traceless part of the combinations
The extrinsic geometry of the wave front foliatiohO) is
in turn described by the second fundamental fokyy,, 1
namely Y ak Kap*5[d"p= (14 O)d(ary"] (23
1 corresponds to eigenfields propagating with light speed (
Kab= 51 (927 L) Tap- (13 =1, respectively The parametet appearing in Eq(23)
is related with the ordering ambiguity inherent to first order
Both o, and ., are 2+ 1 tensors, in the sense that they formalisms, where the space derivatig; are considered
transform in a covariant way under changes of coordinates dP Pe independent quantities, so that the identity

the form G gy =0 (24)
z=1(2), (14) is not granted and must be considered as a supplementary
constrain1]. The valuel=—1 corresponds to a decompo-
x*=h?(x,2), (15)  sition of the three-dimensional Ricci tensor of the fofi),
which is closer to the wave equation. The valtze+1 cor-
which transform the wave front foliatio(10) into itself. responds instead to the simpler decomposition
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(S)Rij=&kaij—0(irkj)k+rkkrrrij—Fknrrkj- (25) sucgessfully used to that. end actually imply the oppgsite
choice ¢=-—1). These include at least the Bona-Masso
Notice that, allowing for(17), the combination£23) in the  [8,12], Shibata-Nakamurf26], Baumgarte-Shapirf27] and

{=+1 case can be written as Anderson-York[25] formalisms. The reason may be that
with the {=—1 choice the transverse traceless part of the
evolution system looks like that of the wave equation, as

‘;F;])ointed out in[1], which is known to admit a symmetric-

yperbolic form.

Symmetric hyperbolicity is a stronger requirement than
eigenfields described by the traceless part of (B§). are not Just strong hyperbolicity in. order to ensure existgnce, unicity
and stability of the solutions arising from a given set of

covariant under the coordinate transformatidh4) and do ... 2
not admit then any consistent, coordinate independent, phys'irJItIaI data(well posednesq 28]. When the evolution system

cal interpretation. It follows that one can solve the ordering!;1 efﬁs\}v;:rogggd:gsserigor:g ebnustu?g(tj féﬂ?ﬁ;ﬁogghngghﬁi’ke
ambiguity for the derivatives in the principal part of the P ’

Ricci tensor by requiring that the eigenfields correspondin he ones arising in numerical experiments due to finite ma-

to the transverse traceless degrees of freedom do have a cl 5’3\2 a;g:ﬁ:ﬁy' have some preliminary evidence that the
geometrical meaning in terms of the geometry of the y P y

— const hypersurfaces and that of the wave fronts. This rec_:h0|ce§= +1 is prone to numerical instabilities. To confirm

quirement amounts to select the particular vajeet 1, cor- this, one must proceed to a systematic exploration of param-

. : . eter space like the one presented in the KST pgjpior the
responding to the classical decompositias). {=—1 case. There is also some theoretical evidgiss

that the choice/=+1, when combined with conventional
choices of the other parameters introducedliy does not
The parameter dependence of the eigenfi¢Z® may lead to a symmetric hyperbolic system. This opens the way,
seem surprising at the first sight, because these transverf®@m the theoretical point of view, to using the symmetric
traceless degrees of freedom are related with a real physichyperbolicity requirement, in theé=+1 case, to restrict the
phenomenorigravitational waves which is independent on values of the other parameters, then reducing the volume of
how we do actually decompose the Ricci tensor. This paraParameter space.
dox can be solved by noticing that the fluxes appear in the We are currently working along these lines, both from the
evolution equationg18) under a divergence operator; the theoretical and from the numerical point of view.
parameter{ appears when including the “rotational” con-
straint (24), but all these terms just cancel under the diver-
gence operator, so that all valuesfoére physically equiva-
lent. We thank Manuel Tiglio for helpful and stimulating dis-
The special choicé= + 1 corresponds to the only case in cussions during his visit to Palma de Mallorca. This work
which the fluxes themselves inherit the covariance propertiesas been supported by the EU Program “Improving the Hu-
of the equations. We claim that this is an important featureman Research Potential and the Socio-Economic Knowledge
because then gravitational radiation features are explicithBase” Research Training Network Contra@PRN-CT-
inherited by the eigenfields of the system. 2000-0013Y, by the Spanish Ministerio de Ciencia y Tecno-
On the other hand, there are indications that+1 may logia through the research grant number BFM2001-0988 and
not be convenient from the numerical relativity point of by a grant from the Conselleria d’'Innovacio i Energia of the
view. Most of the formalisms that are being currentand  Govern de les llles Balears.

Kab* Kab (26)

so that they have a geometrical meaning in terms of th
extrinsic curvature of theé=const hypersurfaces and the
wave front foliation. For any other value ¢f however, the

IV. CONCLUDING REMARKS

ACKNOWLEDGMENTS

[1] L.E. Kidder, M.A. Scheel, and S.A. Teukolsky, Phys. Rev. D [9] S. Frittelli and O.A. Reula, Commun. Math. Phyk66, 221

64, 064017(2001). (1994).
[2] T. De. Donder,La Gravifique EinsteniennéGauthier-Villars,  [10] C. Bona, inHyperbolic Problems: Theory, Numerics, Applica-
Paris, 1921 tions Int. Series of Numerical Mathematics, \Vol. 129
[3] C. Lanczos, Phys. 23, 537(1922. (Birkhauser, Boston, 1999
[4] Y. Choquet-Bruhat, Acta Matt88, 141 (1955. [11] A. Abrahams, A. Anderson, Y. Choquet-Bruhat, and J.W. York,
[5] S.W. Hawking and G.F.R. EllisThe Large Scale Structure of Phys. Rev. Lett75, 3377(1995.
SpacetimgCambridge University Press, Cambridge, England,[12] C. Bona, J. MasscE. Seidel, and J. Stela, Phys. Rev. L&8,
1973. 600 (1995.
[6] D. DeTurck, Invent. Math65, 179 (1981). [13] C. Bona, J. MasscE. Seidel, and J. Stela, Phys. Rev.5B,
[7] Y. Choquet-Bruhat and T. Ruggeri, Commun. Math. PI8g. 3405(1997).
269 (1983. [14] S. Frittelli and O.A. Reula, Phys. Rev. Left5, 4667(1996.
[8] C. Bona and J. Mass®hys. Rev. Lett68, 1097(1992. [15] H. Friedrich, Class. Quantum Grai4, 1451(1996.

064020-3



C. BONA AND C. PALENZUELA PHYSICAL REVIEW D66, 064020 (2002

[16] M.H.P.M. van Putten and D.M. Eardley, Phys. Re\6®) 3056 (2001).

(1996. [24] M. Alcubierre, B. Bruegmann, M. Miller, and W.M. Suen,
[17] F.B. Estabrook, R.S. Robinson, and H.D. Wabhlquist, Class. Phys. Rev. D60, 064017(1999.

Quantum Gravl4, 1237(1997. [25] A. Anderson and J.W. York, Jr., Phys. Rev. LR, 4384
[18] M.S. Iriondo, E.O. Leguizamon, and O.A. Reula, Phys. Rev. (1999.

Lett. 79, 4732(1997). [26] M. Shibata and T. Nakamura, Phys. Rev5R 5428(1995.
[19] M.A.G. Bonilla, Class. Quantum Grag5, 2001(1998. [27] T.W. Baumgarte and S.L. Shapiro, Phys. Rev5®) 024007
[20] J.M. Stewart, Class. Quantum Grab, 2865(1998. (1999.
[21] G. Yoneda and H. Shinkai, Phys. Rev. L&®, 263(1999. [28] H.O. Kreiss and J. Lorentznitial Boundary Value Problems
[22] H. Shinkai and G. Yoneda, Class. Quantum GraX, 4799 and the Navier-Stokes Equationg\cademic, New York,

(2000. 1989.

[23] G. Yoneda and H. Shinkai, Class. Quantum Gra8, 441  [29] L. Lindblom and Mark A. Scheel, gr-qc/0206035.

064020-4



